MATH1520 University Mathematics for Applications Spring 2021

Chapter 8: Application of Derivatives III

Learning Objectives:
(1) Model and analyze optimization problems.
(2) Examine applied problems involving related rates of change.

8.1 Optimization Problem

Maximize/minimize some quantities from applied problem. This is an application of absolute
extrema of functions.

Example 8.1.1. The figure shows an offshore oil well located at a point W that is 5km from
the closest point A on a straight shoreline. Oil is to be piped from W to a shore point B that
is 8km from A by piping it on a straight line under water from W to some shore point P
between A and B and then on to B via pipe along the shoreline. If the cost of laying pipe
is $1.000.000/km under water and $500,000/km over land, where should the point P be
located to minimize the cost of laying the pipe?

Solution. Let

x = distance (in kilometers) between A and P, i.e. |AP)|

then,
|PB| =|AB| — |AP| = (8 —x) km

WP| =22 +25 km
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Setting f’(x) = 0 and solving for x yields
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So, x =+ % 15 the only critical number in (0, 8).

Compare

5
£(0) =, f(%) zfﬁio,;u(g) ~9.433.2 é]

The least possible cost of the pipeline (to the nearest dollar) is $8, 330,127, and this
occurs when the point P is located at a distance of 5/ V3 = 2.89 km from A.
AN—TT

Procedure to solve Optimization problem:

1. Assign variables, set up a function by expressing the quantity to be optimized in terms
of the independent variable.

2. Find the absolute extrema of the function.

Example 8.1.2. Find the radius and height of the right circular cylinder of largest volume
that can be inscribed in a right circular cone with radius 6 inches and height 10 inches.

Solution. Let
r = radius (in inches) of the cylinder

height (in inches) of the cylinder
V= volume (in cubic inches) of the cylinder
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The formula for the volume of the inscribed cylinder is

V = mr?h. (’(q‘ \
Using similar triangles, we obtain ‘ R(
10-hp_ 1,9 or h'= 10—§7‘. "\’“’\’A J
S i ~t
Vike mr? (10 — gr) = 107mr? — 271'7’3 ¢ (8.2)

which expresses V' in terms of r alone. Because r represents a radius, it cannot be negative,
and because the radius of the inscribed cylinder cannot exceed the radius of the cone, the
variable r must satisfy

0<r<6

Thus, we have reduced the problem to that of finding the value (or values) of  in [0, 6] for
which V is maximum.

From (8.2) we obtain
dVv

— = 2077 — 5mr® = 5rr(4 —
o wr — 57r mr(4d—r)
Setting 4 = 0 gives
Srr(4d —r) =0,
so r = 0 and r = 4 are critical points. Since these lie in the interval [0, 6], the maximum must
occur at one of the values

r =0, r =4, r = 06.

Substituting these values into (8.2), we have

/
V) 100

V =0, , V=0
It tells us the maximum volume V = 1% occurs when the inscribed cylinder has radius 4
in. When r = 4 it follows that h = %. Thus, the inscribed cylinder of largest volume has
radius r = 4 in and height h = T\ \ jo=5 ¢ u
2

Example 8.1.3. Among all the rectangles with fixed area Sy > 0, find the minimal perimeter.

Solution. Let one side of the rectangle has length = > 0 then the other side is %, and the

perimeter is W
Perimeter f(z) =2(z + &), z € (0,+00)
% a ~——rl .
. i I 2o+ LJ
X Although extreme value theorem cannot be applied on (0, +00), we can still use the
monotonicity to find the absolute extrema.
A’f eA = go _ ‘r;o
‘ Let T
xq. So

flx)=21-=5)=0, = z= VSy or — /Ay (rejected, not in (0, +00))
= — eib col s
u\/vl @94'}
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1+
/

z | (0,v/So) VSo (v/So, +0)
f(z) - 0 +
f ) absolute min 0
AN
Thus the minimal perimeter occurs when z = +/Sp, i.e. it is a square. < [
W\/:MM PM'(M&"M = %Cﬁvfa—é
8.2 Related Rates = ¢4J%..

Given rate of change of one quantity A, find the rate of change of another quantity B which
is related to A. This is an application of implicit differentiation.

Example 8.2.1. A 26-foot ladder is placed against a wall. If the top of the ladder is sliding
down the wall at 2 feet per second, at what rate is the bottom of the ladder moving away
from the wall when the bottom of the ladder is 10 feet away from the wall?

Solution. At any time ¢, let

z(t) = the distance of the bottom of the ladder from the wall
y(t) = the distance of the top of the ladder from the ground

x and y are related by the Pythagorean relationship:
22 (t) + 2 (t) = 262 (8.3)
Differentiating the above equation implicitly with respect to ¢, we obtain

dx dy
2250 4 oy™Y =
T TV

0. (8.4

d d
The rates d—f and d—‘z are related by equation (8.4). This is a related-rates problem.

By assumption,

i —2 (y is decreasing at a constant rate of 2 feet per second).

When z(t) = 10, y(t) = V262 — 102 = 24 feet.

So,
dx ydy —2(24)(-2)
7 T 2010) 8 feet per second

The bottom of the ladder is moving away from the wall at a rate of 4.8 feet per
second. [ |
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Refer to Example 3.4.2.
Because of an increase in the
speed limit, the speed past
the exit is now

Sy(t) =t — 10.5t2 + 30t + 25

Graph S(t) and S;(t) using the
window [0, 6]1 by [20, 60]5.
At what time between 1 P.Mm.
and 6 PM. is the maximum
speed achieved using S;(t)?
At what time is the minimum
speed achieved?

FIGURE 3.38 The speed of

air during a cough

S(r) = ar*(ry — 1.

SECTION 3.4 OPTIMIZATION; ELASTICITY OF DEMAND 251

Compute S() for these values of ¢ and at the endpoints r = 1 and t = 6 to get
S(1) = 40.5 S(2) = 46 S(5) = 325 S(6) = 38

Since the largest of these values is S(2) = 46 and the smallest is S(5) = 32.5, we can
conclude that the traffic is moving fastest at 2:00 P.M., when its speed is 46 miles per
hour, and slowest at 5:00 P.M., when its speed is 32.5 miles per hour. For reference,
the glaph of § is sketched in Flgure 3.37.
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x EXAMPLE 3.4.3 Fmdmg Maximum Air Speed During a Cough

"When you cough, the radius of your trachea (windpipe) decreases, affecting the speed
of the air in the trachea. If v, is the normal radius of the trachea, the relationship
between the speed_Sof the air it and the radius  r of the trachea during a cough is given

by a function of the form S(r) = ar’(ry — r), where a is a positive constant.* Find
the radius r for which the féed of t

Solution

The radius r of the contracted trachea cannot be greater than the normal radius ry or
less than zero. Hence, the goal is to find the absolute maximum of S(r) on the inter-
P e s

val0 = r = r,
First differentiate S(r) with respect to r using the product rule and factor the deriv-
ative as follows (note that a and ry are constants):

S'(r) = —ar* + (ro — nQ@ar) = ar[—r + 2(ro — 1] = ar2ry — 3r)
ANN—— e —

Then set the factored derivative equal to zero and solve to get the critical numbers:

ar(2ro —3r) =20

Both of these values of r lie in the interval 0 = r = r,, and one is actually an
endpoint of the interval. Compute S(r) for these two values of r and for the other

endpoint r = ry to get / |t‘H cm‘ pt' V,J/w -emd
=;—‘71r(3) S("o) 4 Lo Yoj

Compare these values and conclude that the speed of the air is greatest when the

2
:0 = —

S(.2)_= 0 S 370

radius of the contracted trachea is 3’0, that is, when it is two-thirds the radius of the

uncontracted trachea.

A graph of the function S(r) is given in Figure 3.38. Note that the r intercepts of
the graph are obvious from the factored function S(r) = arz(ro — r). Notice also that
the graph has a horizontal tangent when r = 0, reﬂectmg the fact that $'(0) = 0.

e == e S o

*Philip M. Tuchinsky, “The Human Cough,” UMAP Modules 1976: Tools for Teaching, Lexington, MA:
Consortium for Mathematics and Its Application, Inc., 1977.
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